Exam Program Correctness, April, 7th 2015, 9:00-12:00h.

- This exam consists of three problems. Problem 1 is worth 20 points, problem 2 is worth 30 points, and problem 3 is worth 40 points. You get 10 points for not misspelling your name and student number.
- Give complete annotations, and linear proofs. Use a pen. Do not use a pencil!
- The exam is a closed book exam. You are not allowed to use the reader, slides, notes, or any other material.
- Do not hand in scratch paper!

Problem 1 (20 pt).
Design an annotated command S that satisfies the Hoare triple:

$$
\left\{P: X \geq 0 \wedge(p-2=X \vee p=-X) \wedge p^{2}+q=Y\right\} \quad S \quad\left\{Q: p=X \wedge p^{2}+q=Y\right\}
$$

Problem $2(30 \mathrm{pt})$. Design and prove the correctness of a command T that satisfies

```
const \(n: \mathbb{N}, \quad a\) : array \([0 . . n)\) of \(\mathbb{Z}\);
\(\operatorname{var} x: \mathbb{Z}\);
    \(\{P\) : true \(\}\)
\(T\)
\[
\{Q: x=\Pi\{\Sigma\{a[j] \cdot a[k] \mid j, k: 0 \leq j \leq k<i\} \mid i: 0 \leq i<n\}\}
\]
```

The time complexity of the command S must be linear in n. Start by defining (a) suitable helper function(s) and the corresponding recurrence(s).

Problem 3 (40 pt). Given is a two-dimensional array a that is decreasing in its first argument and ascending in its second argument. Consider the following specification:

```
const \(n, w: \mathbb{N}, a:\) array \([0 . . n)\) of \(\mathbb{N}\);
\(\operatorname{var} z: \mathbb{N}\);
    \(\{P: Z=\#\{(i, j) \mid i, j: 0 \leq i \wedge 0 \leq j \wedge i+j<n \wedge a[i, j]=w\}\}\)
U
    \(\{Q: Z=z\}\)
```

(a) Make a sketch in which you clearly indicate where the array is high, low, and how a contour line goes.
(b) Define a function $F(x, y)$ that can be used to compute Z. Determine the relevant recurrences for $F(x, y)$, including the base cases.
(c) Design a command U that has a linear time complexity in n. Prove the correctness of your solution. [Note: you can only receive points for part (c) if the recurrences in part (b) are correct]

